

A 5-Point Minimal Solver for Event Camera Relative Motion Estimation

Ling Gao*, Hang Su*, Daniel Gehrig, Marco Cannici, Davide Scaramuzza, Laurent Kneip

Motivation:

In the line-based motion estimation with event cameras, events generated by a single line are typically modelled as **simple**, **yet incorrect** spatio-temporal planes.

Contribution:

- 1. Parametrization of the **non-linear manifold** of events generated by a line observed under locally constant speed;
- 2. Minimal solver of the manifold parameters: **3D line**, and **partial camera velocity**;
- 3. Fusion of multiple partial camera velocity measurements into a single, averaged velocity.

What is an event camera?

- Only transmits brightness changes
- Output is a stream of asynchronous events
- Advantages: high temporal resolution, reduced motion blur, low power consumption, high pixel bandwidth, HDR

Method:

Geometric view of the incidence relationship

- We use the Plücker coordinates to define a 3D line and an event ray, and their incidence relationship
- Only partial velocity can be observed by a single eventail solver (aperture problem)
- Solve for unknowns \mathbf{P}_a , \mathbf{P}_b and \mathbf{v}_l with Gröbner-basis theory under scale sconstraint: $(\mathbf{R}_l \mathbf{v}_l)^{\mathsf{T}} \cdot (\mathbf{R}_l \mathbf{v}_l) 1 = 0$
- Problem has 6 1 = 5 unknowns (scale is unobservable) --> five events are needed for a minimal solution

$$t'_j(\mathbf{P}_b - \mathbf{P}_a)^{\mathrm{T}} ((\mathbf{R}_l \mathbf{v}_l) \times \mathbf{f}'_j) - \mathbf{f}'^{\mathrm{T}}_j(\mathbf{P}_b \times \mathbf{P}_a) = 0$$

Velocity Averaging Scheme

Linear velocity constraint

$$\mathbf{v}^{\mathsf{T}}\left(\left\|\mathbf{e}_{3i}^{l}\right\|^{2}\mathbf{e}_{2i}^{l}v_{zi}^{l}-\left\|\mathbf{e}_{2i}^{l}\right\|^{2}\mathbf{e}_{3i}^{l}v_{yi}^{l}\right)=0$$

Incidence relation equation:

- Each manifold imposes a linear constraint on the camera velocity
- Recover camera velocity by stacking multiple constraints.

Qualitative Results:

An event camera observing two lines and moving with constant linear and angular velocity triggers events lying on a manifold.

Clustering these events based on spatio-temporal planes [2] generates many spurious clusters (colorful points) and outliers (grey points).

Non-linear manifold

clustering generates two large clusters with fewer outliers. Our minimal 5-point solver recovers the parameters for each manifold.

Quantitative Analysis:

Noise resilience of the minimal solver

Validity of motion model from multiple eventails

References: [1] L. Gao, et. al. VECtor: A versatile event-centric benchmark for multi-sensor SLAM. RAL 2022.

[2] X. Peng, et. al. Continuous event-line constraint for closed-form velocity initialization. BMVC 2021

Comparison with another closed-form solver on real data

Sequences [1]	CELC+opt [2]			Ours				
	ϕ^*_{mean}	ϕ^*_{median}	Success	ϕ^*_{mean}	ϕ^*_{median}	$\phi_{ m mean}$	$\phi_{ m median}$	Success
board-slow	0.451	0.434	65.69%	0.429	0.385	0.484	0.416	100%
mountain-normal	0.483	0.512	56.70%	0.542	0.528	0.584	0.586	100%
desk-normal	0.464	0.464	69.86%	0.461	0.474	0.461	0.466	100%
sofa-normal	0.419	0.455	23.16%	0.532	0.438	0.550	0.514	100%

Direction Error (\phi): the angle between the estimated and the ground truth velocity **Success Rate**: the percentage of seq. where the algorithm outputs reasonable results

Project Webpage

https://mgaoling.github.io/eventail/

Sponsors

Shanghai Science Foundation

