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Abstract

Event-based cameras are ideal for line-based motion es-

timation, since they predominantly respond to edges in the

scene. However, accurately determining the camera dis-

placement based on events continues to be an open prob-

lem. This is because line feature extraction and dynamics

estimation are tightly coupled when using event cameras,

and no precise model is currently available for describing

the complex structures generated by lines in the space-time

volume of events. We solve this problem by deriving the cor-

rect non-linear parametrization of such manifolds, which

we term eventails, and demonstrate its application to event-

based linear motion estimation, with known rotation from

an Inertial Measurement Unit. Using this parametrization,

we introduce a novel minimal 5-point solver that jointly es-

timates line parameters and linear camera velocity projec-

tions, which can be fused into a single, averaged linear ve-

locity when considering multiple lines. We demonstrate on

both synthetic and real data that our solver generates more

stable relative motion estimates than other methods while

capturing more inliers than clustering based on spatio-

temporal planes. In particular, our method consistently

achieves a 100% success rate in estimating linear veloc-

ity where existing closed-form solvers only achieve between

23% and 70%. The proposed eventails contribute to a bet-

ter understanding of spatio-temporal event-generated ge-

ometries and we thus believe it will become a core building

block of future event-based motion estimation algorithms.

Project page: https://mgaoling.github.io/eventail/

1. Introduction

Event-based cameras are bio-inspired vision sensors that

naturally react to edges moving in the scene with microsec-

ond temporal resolution and minimal motion blur. These

intrinsic properties make events ideal for accurate rela-

tive motion estimation, especially under challenging motion

and lighting conditions where standard cameras often fall

short. Nevertheless, estimating motion from event measure-

*indicates equal contribution
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Figure 1. An event camera observing two non-parallel lines and

moving with constant linear and angular velocity. The events trig-

gered by each line lie on a manifold, which we call an eventail. We

derive a minimal 5-point solver to estimate the parameters of the

manifold, which includes both camera motion and scene geometry.

Clustering these events based on spatio-temporal planes as done in

previous work [24, 33] generates many spurious clusters (colorful

points) with many outliers (grey points). Instead, eventails result

in two large clusters with fewer outliers, and a velocity direction

error of only 0.01 rad.

ments is an open challenge, as motion cues need to be in-

ferred from the complex spatio-temporal structures formed

by events, which typical vision-based algorithms struggle to

grasp. Although event-based cameras have recently demon-

strated unprecedented performance [41], the recent devel-

opment of autonomous systems has created an increased de-

mand for more accurate and reliable solutions which could

better exploit the opportunity of improved motion modeling

offered by these sensors.

However, while with a traditional camera, solving for

relative motion simply means aligning two views with suf-

ficient overlap, this problem is not as straightforward to de-

fine for an event-based camera since views are not even

available in the first place. Furthermore, even if the fields

of view of the camera share substantial overlap at two dif-

ferent points in time, the structure of the perceived events at

those two moments remains very much a function of local

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8049



camera dynamics. In the worst case, if the camera ceases to

move at all, no more events are triggered, and relative pose

estimation becomes an ill-posed problem. It is intuitively

clear that—for a dynamic vision sensor—the most funda-

mental problem of relative motion estimation is therefore

given by the determination of local camera dynamics from

a relatively short interval of events. The present paper intro-

duces a geometric, deterministic solution to this problem.

The sparse and noisy nature of events has pushed the ge-

ometric vision community towards semi-dense approaches

that make use of or optimize edge maps [37, 13, 52]. Based

on the assumption that the gradient map contains straight

lines, a promising area of research, therefore, looks at line

features as a possible alternative to assist the geometric

solution of relative event camera motion. Works in this

area [24, 33], however, have inherent limitations that stem

from a wrong assumption made during the initial feature ex-

traction step. Indeed, they perform feature extraction inde-

pendently of the relative camera displacement information,

and they rely on a simple clustering strategy that models

the space-time volume of events generated by a line under

motion as a plane. However, as will be explained in detail

in this work, lines do not form flat planes in the space-time

volume of events, even if the camera undergoes constant

linear and angular velocity, as evident from Figure 1.

It is thus clear that the problem of line feature extraction

in the space-time volume of events can no longer be consid-

ered apart from the problem of dynamics estimation. In the

present paper, we depart from this approximation and intro-

duce a novel feature extractor that relies on a rigorously de-

rived geometrical model of line-generated manifolds. Clus-

tering the events of one manifold entails the identification of

the manifold parameters, thereby leading to an implicit so-

lution of the linear camera velocity from given angular rates

measured by an Inertial Measurement Unit (IMU). Specifi-

cally, we make the following contributions:

• We introduce a minimal geometric parametrization of

the manifolds that contain all events generated by the

observation of a single line under the assumption of

locally constant, linear velocity. The parametrization

involves the velocity components that are non-parallel

to the line, as well as a minimal 3D parametrization of

the line itself.

• Based on this incidence relationship, we propose a

minimal 5-point solver for the manifold parameters,

and demonstrate its application in robust clustering for

line feature detection and partial camera dynamics de-

termination.

• We conclude with an averaging scheme that fuses the

partial camera dynamics observations from each line-

generated cluster into a complete estimate of the linear

camera velocity, and thereby presents a rigorous theory

for deterministic event camera motion initialization.

The present paper focuses on a theoretical understand-

ing of line-generated manifold features, and thereby con-

tributes to a better understanding of the geometry of the

temporally dense-sampling event cameras. The theory is

thoroughly evaluated on simulated data, and the advantage

of the method is also demonstrated in a few concluding

real-world examples. In particular, we show that using our

method can consistently achieve a 100% success rate in es-

timating linear velocity where existing closed-form solvers

achieving a success rate 23% and 70%.

2. Related work

Vision-based camera motion estimation is a long-studied

problem, and there have been countless solutions for single-

camera, multi-camera, and visual-inertial scenarios. The

interested reader is kindly referred to the survey of Ca-

dena et al. [6] for a relatively recent overview. A work

worth separate mention, though, is by Weiss et al. [45], who

directly estimate camera velocity.

Event-based motion estimation. The present work looks

at motion estimation with an event camera, for which the

last decade has already seen a number of solutions. Weik-

ersdorfer et al. [44] originally propose a 2D-SLAM sys-

tem with a dynamic vision sensor by employing a parti-

cle filter. The same group also proposes an event-based

3D SLAM framework by fusing events with a classical

frame-based RGB-D camera [43]. Other event-based vi-

sual odometry systems make use of known depth or 3D

structure [7, 30, 12, 5, 8], or are simply limited to the

pure rotation scenario [13]. Contrast maximization [13, 11]

is proposed as a unifying framework applicable to sev-

eral event-based vision tasks. It draws substantial atten-

tion [22, 39, 26, 32, 31], but it is still limited to homo-

graphic warping scenarios. Full 6-DoF estimation is solved

by Kim et al. [21] using a filtering approach, and Re-

becq et al. [37] using an alternating tracking and mapping

framework. Zhu et al. [51], Rebecq et al. [36], and Mueg-

gler et al. [29] furthermore propose more reliable frame-

works by fusing the measurements with an IMU.

More practical 6-DoF odometry and SLAM solu-

tions keep being proposed by fusion with other sensors.

Kueng et al. [22] combines the event camera with a standard

camera to track features and build a probabilistic map. A

similar sensor combination is used in Ultimate-SLAM [41],

which improves robustness and accuracy by minimizing

both vision and event-based residual errors. Zhou et al. [50]

propose the first event-based stereo odometry system, while

Zuo et al. [52] use a hybrid stereo setup composed of an

event and a depth camera to realize DEVO, a semi-dense

edge-tracking method. Finally, a recent work by Hidalgo-

Carrió et al. [19] introduces EDS, a 6-DOF monocular di-

rect visual odometry that combines events and frames.
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Geometry-based motion estimation. Event-based mo-

tion estimation can be divided into optimization-based [37,

24, 29], filter-based [51, 44] and learning-based [27, 15] so-

lutions. However, there is a lack of research on how funda-

mental geometry can be applied to event-based vision. For

normal cameras, Weng et al. [46] and Hartley et al. [17] are

among the first to introduce closed-form solutions for line-

based motion estimation. Bartoli and Sturm [1, 2] introduce

complete line-based structure from motion. More recently,

based on modern line-feature extraction methods such as

LSD [42], Zhang et al., Pumarola et al., and He et al. pro-

pose stereo [49], monocular [35], and visual-inertial fu-

sion [18] based solutions to real-time, line feature-based

SLAM, respectively.

Of particular interest to this work are event-based meth-

ods that rely on line features. Yuan et al. [47] and Le Gen-

til et al. [24] present optimization-based solutions, while

Peng et al. [33] use tri-focal tensor geometry to present the

first closed-form velocity initialization method. However,

the methods make use of event-based line-feature extrac-

tors [4, 40] that fail to properly parametrize the line location

in both space and time. Furthermore, their minimal solver

needs at least 2 lines and therefore 10 events to make a sin-

gle hypothesis.

Everding and Conradt [10] present a low-latency line

tracker, while Mitrokhin et al. [28] present a learning-

based method to track the surfaces generated by events.

Ieng et al. [20] and Seok and Lim [38] finally propose

model-based methods to fit and track the surfaces or curves

generated by events. The perhaps most related work to ours

is the work of Ieng et al. [20], who aim at understanding the

spatio-temporal sub-space properties of the surfaces gener-

ated by events. However, to the best of our knowledge, our

work is the first to establish a minimal parametrization of

the surface as a function of the observable 3D spatial and

dynamic parameters. Furthermore, we are the first to pro-

pose a deterministic minimal solver for this problem.

3. Theory

We assume to have a calibrated event camera under mo-

tion observing a scene that can be approximated by a set of

3D lines. We consider a temporal slice of events from which

our objective is to initialize a first-order approximation of

local camera dynamics. The motion of each observed line

generates its own set of events, and—while the instanta-

neous reprojection of a line is still a line—each event clus-

ter is generated by a line that moves and rotates through the

space-time volume of events, thereby generating a DNA-

like manifold distribution. In the following, we denote such

a manifold an eventail1. A set of eventails from which we

1The word is derived from the French word éventail, as the translating

and rotating instantaneous line reprojection indeed resembles the geometry

of the support sticks of a traditional fan.

wish to determine the camera velocity parameters is indi-

cated in Figure 1.

The present section presents the theory of our method.

We start with preliminaries and notations used throughout

the paper. Next, we introduce a simple incidence relation

that all events from one eventail need to satisfy. The con-

straint is transformed into minimal form, which not only

reveals the intrinsic geometry of eventail manifolds and its

dependency on spatio-temporal parameters, but also permits

the derivation of a novel minimal solver that can be used for

event clustering and a partial initialization of camera dy-

namics. To conclude, we present a complete velocity deter-

mination framework in which the partial observations from

multiple eventails are merged into one common result.

3.1. Notations and preliminaries

We define the time interval of our slice of the space-time

volume of events as t ∈ [ts−∆t, ts+∆t]. The set of events

observed during this interval is given by E = {Ei}i=1,...,N ,

where Ei represents the manifold cluster of events corre-

sponding to the i-th 3D line Li. Each j-th event of the i-
th cluster eij = {uij , vij , tij , pij} is given by its uij and

vij coordinates in the image plane, its timestamp tij , and

its polarity pij
2. The camera is assumed to be calibrated

and we are given a function [u v]⊺ = π (P) that projects

points P ∈ R
3 defined in the camera frame into the im-

age plane. Conversely, we are given the inverse function

f = π−1 (u, v) that transforms image plane coordinates into

a unit-norm 3D direction vector defined in the camera frame

and pointing towards the corresponding point in 3D. We fur-

thermore define the first-order dynamics parameters v and

ω, which represent the instantaneous translational and rota-

tional velocity of the camera, respectively3.

A line L in R
3 can be represented by its direction vec-

tor d and a point P that lies on the line. The Plücker co-

ordinates of this line are then defined as [d⊺
m

⊺]⊺
.
=

[d⊺ (P× d)
⊺
]⊺, and the vector m is referred to as the mo-

ment vector. If two nonparallel lines L1 = [d⊺

1 m
⊺

1 ]
⊺ and

L2 = [d⊺

2 m
⊺

2 ]
⊺ intersect, the following product is required

to vanish, i.e.

⟨d1 ,m2⟩+ ⟨d2 ,m1⟩ = 0 , (1)

where ⟨· , ·⟩ stands for the inner product. Note that, as long

as the moment vector is strictly defined as the cross-product

of a point on the line and the exact same direction vector that

is used as the first three entries of the Plücker vector [34],

2Note that, in this work, polarity is ignored.
3Note that the constant velocity motion assumption is violated if the

camera experiences more jerky motion. One may argue that the approxi-

mation still holds within smaller time intervals, which will however limit

the number of events and the baseline experienced over the course of the

interval, and thus reduce the observability of depth and motion. As with

any constant velocity approximation, our approach depends on sufficiently

smooth motion.
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the constraint is generally valid and there is no requirement

on the norm of the direction vector.

3.2. Incidence Relationship

The entire problem is formulated relative to the camera

frame at time ts. Let Li = [d⊺

i m
⊺

i ]
⊺ be the Plücker coordi-

nates of a line defined in the said reference frame. eij ∈ Ei
is the j-th event triggered by the moving reprojection of

the i-th line Li. Using our first-order dynamics approxima-

tion, we can easily define the position of the camera cen-

ter at time tij seen from the reference frame at time ts as

C [tij ] = v · (tij − ts), and the rotation that takes points

from the camera frame at time tij back to the reference

frame at time ts as R [tij ] = exp(⌊ω⌋× (tij − ts)). Here,

⌊ω⌋× ∈ R
3×3 is the skew-symmetric matrix formed from

the angular rate ω ∈ R
3. Note that, similar to [33], we as-

sume the angular velocity of the camera to be known, as it

can be reliably measured by modern IMU’s. We will present

a sensitivity analysis to these measurements in the experi-

mental section. Last, the direction vector pointing from the

camera frame at time tij to the 3D point on the line Li that

triggered the event is given by fij = π−1 (uij , vij).
The measurement of the event can now easily be ex-

pressed as a ray defined in the reference frame at time ts
where R [tij ] fij is the direction of the ray, and C [tij ] rep-

resents the origin of the ray (i.e. a point on the line). The

ray is therefore described by the Plücker coordinates

[(R [tij ] fij)
⊺

(C [tij ]× (R [tij ] fij))
⊺
]
⊺
. (2)

Finally, the incidence relation is given by (1), namely

⟨di ,C [tij ]× (R [tij ] fij)⟩+ ⟨R [tij ] fij ,mi⟩ = 0 . (3)

Next, we assume that rotational velocity is already

known. In practice, this assumption is easily satisfied by

the addition of an IMU. In the continuation, we therefore as-

sume that events are directly represented by their unrotated,

normalized coordinates f ′ij = R [tij ] fij . Our incidence re-

lation becomes

⟨di ,
(

v · t′ij
)

× f
′

ij⟩+ ⟨f ′ij ,mi⟩ = 0 , (4)

where t′ij = tij − ts. Figure 2 indicates the geometry

of the problem. The above incidence relation is already

in polynomial form, and relates our measurements f
′

ij and

t′ij to the remaining unknowns v and Li. However, it is

not a minimal parametrization of the eventail manifold be-

cause Plücker coordinates are not minimal representations

of lines, and the velocity component that is parallel to the

line indeed has no influence on the incidence condition

(i.e. it is unobservable, as sliding the camera along the di-

rection of the line is unable to cause residual errors, a con-

dition which is also known as the aperture problem).
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Pj

Figure 2. Incidence relationship between the line L with the two-

point-two-plane parametrization, and the event with the bearing

vector f ′j . Camera velocity is given in the line-dependent reference

frame Rℓ = [eℓ
1 e

ℓ
2 e

ℓ
3].

3.3. Transition into a minimal form

The following three subsections are with respect to a sin-

gle cluster, only, which is why index i is dropped from the

formulation. The transition into minimal form consists of

two steps. We start by replacing the representation of the

unknown 3D line by a two-point-two-plane parametriza-

tion [16], which is minimal. More specifically, we define

the 3D line L by the intersection points with the planes

x = 1 and x = −1 defined in the reference frame at time

ts. The two points in the reference frame are given by

Pa = [−1, ya, za]
⊺ , Pb = [1, yb, zb]

⊺ . (5)

As required, the new, minimal parametrization has only four

degrees of freedom. Note that the orientation of the support

planes for the two points can be arbitrarily changed, and

their normal vectors can be chosen such that they are par-

allel to the approximate direction of the line in the image

plane at time ts (the latter can be set by for example con-

sidering the line connecting event samples). Without loss

of generality, here we assume that the reference frame is

already defined such that the support planes are given as

defined above.

Next, we take care of the above-discussed problem that

only part of the velocity vector is observable from a single-

line observation under constant first-order dynamics. A

minimal parametrization of the eventail manifold can only

depend on part of the velocity vector, which notably are the

components that are orthogonal to the line direction vector.

To explicitly parametrize the vector as such, we introduce

an intermediate, line-dependent reference frame in which

the observable part of the camera velocity can be simply

defined. The intermediate reference frame is given by

e
ℓ
1 = Pb −Pa , e

ℓ
2 = Pb ×Pa , e

ℓ
3 = e

ℓ
1 × e

ℓ
2 . (6)
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e
ℓ
1 is parallel to the line direction, eℓ2 is orthogonal to plane

traversing the camera center and the line L, and e
ℓ
3 is con-

tained in the latter plane but pointing orthogonally away

from the line. Only velocity components along e
ℓ
2 and e

ℓ
3

are observable, hence the velocity can be substituted by

v =
[

e
ℓ
1 e

ℓ
2 e

ℓ
3

]

·
[

0 vℓy vℓz
]⊺

= Rℓvℓ . (7)

As required, this parametrization has only two additional

degrees of freedom (i.e. vy and vz). Note that Rℓ is not

an orthonormal rotation matrix, but it only represents an

orthogonal basis for the minimal definition of the velocity.

Using the new parameters, incidence relation (4) becomes

t′j(Pb −Pa)
⊺((Rℓvℓ)× f

′

j)− f
′

j

⊺
(Pb ×Pa) = 0. (8)

The two-point-two-plane parametrization and the interme-

diate, line-dependent reference frame are shown in Figure 2.

3.4. Elementary properties of the minimal form

Before introducing the solver, here we list two corollar-

ies along with their corresponding proofs.

Corollary 1: The solution in terms of motion and struc-

ture parameters is scale invariant. In the case of our

parametrization, the scale invariance is entirely reflected by

the structure parameters. Scaling the line L will scale the

velocity basis vectors eℓ2 and e
ℓ
3 such that vℓy and vℓz remain

unchanged. The latter are constant ratios.

Proof: It is sufficient to prove that if scaling the line

points Pa and Pb by a factor k, the basis vectors eℓ2 and e
ℓ
3

will be equally scaled by k. Let us denote the intersection

points with planes x = −1 and x = 1 of the scaled line

by P
′

a and P
′

b. P′

a and P
′

b must lie on the line connecting

kPa and kPb such that their first coordinate equals to -1 or

1, respectively. We therefore have

{

P
′

a = kP′

a + λa(kPb − kPa) = [−1 · ·]⊺

P
′

b = kP′

a + λb(kPb − kPa) = [1 · ·]⊺
(9)

⇔

{

2λak − k = −1
2λbk − k = 1

⇔

{

λa = k−1
2k

λb =
k+1
2k

.

Back substituting in (9), we obtain

{

P
′

a = k
2 (Pa +Pb)−

(Pb−Pa)
2

P
′

b =
k
2 (Pa +Pb) +

(Pb−Pa)
2

. (10)

The new basis vector e′
ℓ
2 is finally given by

e
′ℓ
2 = P

′
b ×P

′
a = −k(Pa +Pb)×

Pb −Pa

2

= −k

(
Pa ×Pb

2
−

Pb ×Pa

2

)

= k (Pb ×Pa) = keℓ2 .

Next, it is easy to see that e′
ℓ
1 = P

′

b−P
′

a = Pb−Pa = e
ℓ
1.

Subsequently, e′
ℓ
3 = e

′ℓ
1 × e

′ℓ
2 = keℓ1 × e

ℓ
2 = keℓ3. ■

Corollary 2: There exists a solution duality, i.e. if

{Pa,Pb,vℓ} is a valid solution, then {P′

a = −Pb,P
′

b =
−Pa,v

′

ℓ = vℓ} is also a solution. It notably corresponds to

a reversal of the velocity and a placement of the line behind

the camera. It is furthermore interesting to note that only

the line parameters are affected by the solution duality.

Proof: e
′ℓ
2 = P

′

b × P
′

a = −(Pb × Pa) = −e
ℓ
2, and

e
′ℓ
1 = P

′

b−P
′

a = Pb−Pa = e
ℓ
1, which is why e

′ℓ
3 = −e

ℓ
3.

Let R′

ℓ =
[

e
′ℓ
1 e

′ℓ
2 e

′ℓ
3

]

. Given that the first coordinate

of vℓ is always zero, we therefore have R′

ℓ ·v
′

ℓ = −Rℓ ·vℓ.

Finally, for our incidence relation, we have

t′j(P
′

b −P
′

a)
⊺((R′

ℓv
′

ℓ)× f
′

j)− f
′

j

⊺
(P′

b ×P
′

a)

= −t′j(Pb −Pa)
⊺((Rℓvℓ)× f

′

j)− f
′

j

⊺
(Pa ×Pb)

= 0 . ■

3.5. Five­point Minimal Solver

There exist six unknowns in our formulation. However,

as mentioned in the above corollaries, there is an additional

scale ambiguity in the line’s support points. Hence, the in-

herent number of degrees of freedom is five, and a min-

imal solver for an eventail can be found by constructing

five incidence constraints from five randomly picked events

from the cluster. To remove the scale invariance, an addi-

tional constraint on the scale is added. Given that only the

structure parameters are affected by the scale invariance, the

scale constraint needs to include the related variables. We

constrain the scale by adding the equation

(Rℓvℓ)
⊺
·Rℓvℓ − 1 = 0. (11)

Using Gröbner basis theory [9], it is easy to find out

that this problem has only two solutions. However, the

fact that part of the solution variables is uniquely defined

leads to some peculiarities in the derivation of the elimina-

tion template [23]. Simply put, there are variable orderings

for which the template leads to an equation where either vy
or vz is a constant. More importantly though, after back

substituting this variable into other equations, no simple so-

lution for the remaining variables is apparent, but a second

elimination template of substantial size needs to be solved.

To solve this problem, we analyzed all 720 possible

monomial orderings and related elimination templates. We

found out that 240 out of the 720 orderings directly lead to

the unique solution for either vy and vz and are unlikely to

reveal the double solution for the line’s support points. The

remaining 480 orderings and related elimination templates

directly lead to the two solutions. The elimination templates

can vary quite substantially in size and reach from 100×428
to 244× 820.

The smallest template that directly leads to the two solu-

tions is indicated in Figure 3, and has a size of 154 × 578.
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Figure 3. The chosen elimination template for our 5-point solver.

Note that, given that the elimination leads to only two solu-

tions, no action matrix decomposition is needed. In turn,

the actual solutions are straightforward to recover from

the last few rows of the template. Among these, we se-

lect the one resulting in the following variable ordering:

vy > vz > ya > za > zb > yb. In particular, it leads to one

quadratic equation in yb, which can be back substituted into

three further equations to lead to univariate constraints in

ya, za, and zb, respectively. With the structure parameters

known, any two events can be used to construct bi-variate

linear constraints on vy and vz .

We embed the 5-point solver into RANSAC and use it

to find the parameters of the eventail, which correspond to

a partial dynamics recovery, as well as an event clustering.

Sampling strategies and inlier criteria are discussed in Sec-

tion 4.

3.6. Velocity averaging from multiple eventails

We are now moving back to multiple eventails, which

is why the index i is reintroduced. The result we obtain

from the clustering algorithm is a partial observation of the

velocity v for each eventail. The observation is given by

the two ratios vℓyi and vℓzi scaling the second and third basis

vectors of Rℓi, respectively. Introducing the unobservable

component κi along the first basis vector, we have

v = e
ℓ
1i · κi + e

ℓ
2i · v

ℓ
yi + e

ℓ
3i · v

ℓ
zi . (12)

By multiplying the equation from the left with either the

transpose of eℓ2i or eℓ3i, and exploiting the orthogonal prop-

erty of the basis vectors, we easily obtain

{

e
ℓ⊺
2iv = e

ℓ⊺
2ie

ℓ
1i · κi + e

ℓ⊺
2ie

ℓ
2i · v

ℓ
yi + e

ℓ⊺
2ie

ℓ
3i · v

ℓ
zi

e
ℓ⊺
3iv = e

ℓ⊺
3ie

ℓ
1i · κi + e

ℓ⊺
3ie

ℓ
2i · v

ℓ
yi + e

ℓ⊺
3ie

ℓ
3i · v

ℓ
zi

⇔

{

e
ℓ⊺
2iv = ∥eℓ2i∥

2
2 · v

ℓ
yi

e
ℓ⊺
3iv = ∥eℓ3i∥

2
2 · v

ℓ
zi

⇔

{

∥eℓ2i∥
−2
2 · eℓ⊺2iv = vℓyi

∥eℓ3i∥
−2
2 · eℓ⊺3iv = vℓzi

.

Stacking the result from all N observed lines and taking into

account that each individual partial velocity observation is

affected by an unknown scale factor, we obtain the linear

averaging scheme












∥eℓ21∥
−2
2 · eℓ⊺21 −vℓy1 · · · 0

∥eℓ31∥
−2
2 · eℓ⊺31 −vℓz1 · · · 0
· · · · · ·
· · · · · ·

∥eℓ2N∥−2
2 · eℓ⊺2N 0 · · · −vℓyN

∥eℓ3N∥−2
2 · eℓ⊺3N 0 · · · −vℓzN












︸ ︷︷ ︸

[A B]










v

λ1

·
·
·

λN










= 0 , (13)

where the additionally requested scaling factors are given

by λ1, . . . , λN . Multiplying the equation from the left with

[A B]
⊺

, we obtain the form

[
U W

W
⊺

V

]







v

λ1

:

λN







= 0 , where (14)

U3×3 =

N∑

i=1

(

e
ℓ
2i · e

ℓ⊺
2i

∥eℓ2i∥
4
2

+
e
ℓ
3i · e

ℓ⊺
3i

∥eℓ3i∥
4
2

)

VN×N = diag
(

(vℓy1)
2 + (vℓz1)

2, . . . , (vℓyN )2 + (vℓzN )2
)

W
⊺

N×3 =








−
vℓ
y1

∥eℓ
21

∥2
2

e
ℓ⊺
21 −

vℓ
z1

∥eℓ
31

∥2
2

e
ℓ⊺
31

:

−
vℓ
yN

∥eℓ
2N

∥2
2

e
ℓ⊺
2N −

vℓ
zN

∥eℓ
3N

∥2
2

e
ℓ⊺
3N








.

Applying the Schur complement trick, we easily obtain

[

U−WV
−1

W
⊺
]

v = 0, (15)

which lets us find v via Eigen decomposition of a 3×3 ma-

trix. Note that V−1 is computed in linear time by simply

inverting each element along the diagonal of V.

4. Experiments

We perform both simulation tests and real-world exper-

iments. We first confirm the theoretical correctness of the

proposed 5-point solver, its noise resilience, and discuss the

implications of different event sampling strategies. Next,

we test the influence of violations of the constant linear ve-

locity motion assumption. We furthermore experimentally

confirm the non-planar nature of the eventail manifold, and

conclude with experiments on a public benchmark, demon-

strating the advantage over existing bootstrapping methods.

In order to evaluate the accuracy of the results, we adopt

one of the criteria in [33], which is the direction error φ be-

tween the estimated and the ground truth velocities, since

the scale is not observable.

4.1. Noise resilience on single cluster

We start by evaluating the performance of the 5-point

solver under different noise setups over synthetic data, and

discuss the impact of different event sampling strategies.

Samples from individual manifolds are generated as fol-

lows. We first randomly generate two lines in the image
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Figure 4. Results for the directional accuracy of the partially observed camera velocity as a function of noise in the event timestamps, the

measured angular velocity, and the event locations. Each box denotes the range from the first quartile to the third quartile of the error

distribution. The median is marked as the black line in the middle.

plane that represent the location of the line at the beginning

and the end of the temporal window of events. The interval

length is set to 0.5 s. Next, we sample randomly directed

linear and angular velocities of 1.0m/s and 90 °/s magni-

tude, respectively. By factoring in the interval duration, we

can deduce the relative camera location between the begin-

ning and the end of the interval by linear motion model, and

extract the corresponding 3D line via triangulation. The line

is furthermore given a finite length in 3D. The virtual event

camera has a resolution of 640×480 and a focal length of

320 pixels. The explained way of defining experiments en-

sures that the line passes through a sufficiently large area

of the image canvas during the interval duration, thereby

simulating well-posed problems where the camera exhibits

sufficient displacement relative to the line in 3D. We ran-

domly sample events, by first sampling a point on the 3D

line, and then sampling the time stamp, at which that point

is projected into the image plane. Each such projection is

then denoted as an event. We analyze four strategies for

sampling events in this way:

• Random: Event timestamps and 3D points on the line

are both sampled randomly.

• Temporal: the time interval is evenly divided into five

sub-intervals, and each of the five events is assigned a

random timestamp within an individual sub-interval.

• Spatial: the line is evenly divided into five segments,

and making sure that each of the five events is triggered

by a random 3D point on an individual sub-segment.

• Spatio-temporal: a combination of the spatial and tem-

poral sampling strategies.

To conclude the experiment setup, we introduce three

types of noise sources with different magnitudes, namely

pixel noise, timestamp jitter, and noise to the camera’s an-

gular velocity, which is assumed to be given by an auxil-

iary sensor. The magnitude of the pixel noise and the noise

on camera angular velocities is consistent within the same

noise level but varies in direction. Zero-mean Gaussian

noise is used for timestamp noise. Results are presented

in Figure 4. Each box in the plot represents the mean er-

rors from fifteen different geometry-motion configurations.

Within each configuration, we conducted 100 evaluations

with different event samples. Note that since the 5-point

solver only takes readings from one cluster and produces

partial observation, we compare the estimated velocity with

the normalized ground truth velocity in the direction per-

pendicular to the line. Moreover, as is standard in SLAM

evaluation pipelines, we do not report evaluations of the line

parameters, as their error is subsumed in the motion errors.

Errors generally increase as noise levels increase. With-

out noise, our solver can always produce zero-error results,

hence proving the theoretical correctness of the proposed

method. There does not exist, however, a golden sam-

pling strategy to produce minimum errors for different noise

sources, though ensuring spatial distribution among the five

sampled events is crucial to achieve accurate results. In the

following RANSAC experiments, we therefore alternate be-

tween spatial and spatio-temporal sampling.

4.2. Multiple clusters and validity of motion model

We have developed an Event-based Geometric wire-

frame Generator, entitled EGG, in order to conduct exper-

iments over longer time periods. The wireframes are com-

posed of finite lines which simulate strong gradient loca-

tions in the scene. Note that the direction of the gradient

does not need to be specified, given that we ignore polarity

in our formulation. The simulator supports different types

of motion models, including both spline-based and non-

polynomial motion. Events are generated whenever a pro-

jected line comes across a pixel center, thereby producing

events with accurate timestamps. A realistic IMU model is

also implemented with bias and random walk. In a nutshell,

the EGG simulator we have developed is capable of pro-
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Figure 5. Average directional errors of fully estimated linear ve-

locity over ten éventails. Results are evaluated for clean and noisy

data, and different violations of the motion model assumptions.

ducing accurate ground truth readings of poses and twists,

corrupted IMU readings, as well as line-generated events

with precise timestamps.

We now investigate the robustness and accuracy of the

overall velocity determination from multiple eventails. We

generate ten line segments within the volume [−2, 2] ×
[−2, 2] × [1.5, 3.0]. Each event is labeled with its cor-

responding line to bypass clustering in the present ex-

periment. In the next two sections, we evaluate the full

RANSAC pipeline. Note, however, that we are still running

RANSAC to fit the eventail parameters to each event clus-

ter. We adopt the angular reprojection error [25] within the

RANSAC algorithm. We conduct two types of motion, both

of which violate the constant linear motion assumption. The

first moves in a circular arc, with a tangential velocity of

1.0m/s and with a radius ranging from 2m to 10m in in-

crements of 2m. Each sequence lasts 0.3 s, and so does the

chosen time window. For each configuration, we generate

twenty sets of events without noise and another twenty with

noise. Perturbations are given by zero-mean Gaussian noise

with a standard deviation of 1 pixel on location and 1ms on

timestamp. We also use corrupted IMU readings with a re-

alistic bias. Finally, the ground truth camera motion has no

rotation and faces in a constant direction. In the second sim-

ulation, we add acceleration with magnitude ranging from

0.1m/s2 to 0.5m/s2 to the linear velocity. Again, the time

window is 0.3 s.
Figure 5 shows that without noise and model violations,

our method can always produce zero-error results. As the

velocity becomes less constant (larger acceleration, smaller

radius), the error increases, but the proposed solver still

shows high noise robustness in these conditions.

4.3. Performance under high dynamics

To demonstrate the full potential of our parametriza-

tion, we generate sequences of 1 s with constant but very

significant linear and angular velocities. Two non-parallel

lines with comparable depth, i.e. from [0, 0.75, 3] to [0, 2, 3]
and from [0.38,−0.65, 3] to [0.75,−1.3, 3] respectively, are

placed in front of the camera. The camera is moving to-

wards the lines with a linear velocity of [0.4, 0.4, 2.0]m/s,
and with a self-rotation of [0, 0,−2π]rad/s. The noise level

is kept the same as in the previous simulation. As show-

cased in the example in Figure 1, our method successfully

fits the two manifolds from five events with inlier ratios of

67.16% and 73.22%, respectively, and a velocity direction

error of only 0.01 rad. On the other hand, traditional plane-

based fitting fails in this case and splits up the set into 34

subsets. As explained next, this difference in clustering will

impact the achievable final accuracy.

4.4. Real­world Experiment

We validate the method on four sequences from a public

benchmark dataset [14] which feature clear line structures.

The dataset provides VGA event recordings from a Gen3

Prophesee camera, 200Hz ground truth camera poses from

a MoCap system, and 200Hz measurements from an XSens

MTi-30 AHRS IMU. To increase efficiency we downsample

the events in each sequence by a factor of ten. We then split

the sequence into non-overlapping intervals of events with a

0.3 s duration each. To find individual line clusters we adopt

two different approaches: In the first approach, we find clus-

ters using cilantro [48] which finds spatio-temporal planes,

as was used in [33], then when sampling 5 tuples of events

from these clusters we count inliers over the entire event set,

which has higher robustness than simply considering events

within that cluster, as was done in [33]. In this experiment

we set the maximum number of event clusters to five. The

second one is unique to our method, and consists of running

RANSAC on the entire window of events until a maximal

inlier ratio is found, then extracting that line and partial ve-

locity estimate together with the inlier events from the event

set, and repeating this step for a total of five times. We

use this strategy whenever cilantro fails to provide sufficient

clusters. This means that our method is strictly more robust

than [33] which cannot recover when cilantro fails. The

estimated velocity is obtained by velocity averaging from

multiple eventails and is further compared with the ground

truth velocity in direction error φ. Comparative results are

listed in Table 1 reporting the mean and median error of suc-

cessful samples in each sequence. Since CELC+opt fails on

a subset of the sequences, we also restrict the evaluation

of our method to the subsequence where CELC+opt is suc-

cessful, and denote these results with an asterisk ∗. Where

there are too few clusters, CELC+opt fails to output valid

results in some samples.

Results We find that while the success rate of [33] ranges

between 23% and 70% our method consistently achieves

100%. Moreover, on the subset where [33] is successful

both methods are comparable in terms of accuracy. This

highlights that our methods signficantly improves on the ro-

bustness of existing closed-form solvers for linear velocity.
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Table 1. Real-world results on the VECtor benchmark [14]. We report the success rate, i.e. , the percentage of sequence’s sections where

the algorithm outputs reasonable results, as well as the velocity direction error φ∗ only computed in these sub-sections. For our method,

which always has 100% success rate, we also report the error φ over the full sequence.

Seq. Name
CELC+opt [33] Ours

φ∗

mean φ∗

median Success φ∗

mean φ∗

median φmean φmedian Success

board-slow 0.451 0.434 65.69% 0.429 0.385 0.484 0.416 100%
mountain-normal 0.483 0.512 56.70% 0.542 0.528 0.584 0.586 100%

desk-normal 0.464 0.464 69.86% 0.461 0.474 0.461 0.466 100%
sofa-normal 0.419 0.455 23.16% 0.532 0.438 0.550 0.514 100%

∗ subset where CELC+opt [33] does not fail

5. Conclusion and Future Work

The present work provides a new understanding of the

geometry of line-generated events perceived under constant

linear and angular velocities. We have derived a theoreti-

cally correct parametrization of the manifold-distribution of

such events, and showed how the parametrization partially

involves camera dynamics parameters. Our presented min-

imal solver for the manifold parameters has been success-

fully embedded into RANSAC, based on which we studied

resilience against noise and motion model violations. Ex-

tensive tests on real-world data have validated the superior

ability of our method to fit éventail manifold parameters,

thereby increasing accuracy and the overall success rate of

the presented bootstrapping algorithm.

Prospective future directions include extending the pro-

posed averaging scheme with uncertainty estimates from

multiple manifolds, as well as optimizing over the cluster

inliers for improved robustness and accuracy of the results.

Moreover, while we showed that our sequential RANSAC

approach was sufficient for fitting multiple lines into a given

event stream, more sophisticated robust multi-model fitting

techniques like Progressive-X [3] could be used to mini-

mize the number of outliers. Finally, the current method

omits the event polarity and does not perform any temporal

smoothing or fusion of accelerometer or gyroscope read-

ings from the IMU. Extending the approach in this direc-

tion would make it acceleration-aware, as [8], and lead to

improved modeling of the camera motion. Despite these

limitations, we believe that our findings lay the cornerstones

for highly successful, incremental smoothing-based motion

estimation.
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